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Chemical-exchange effects in NMR spectroscopy enable kinetic
processes to be characterized at equilibrium in solution. Beginning
with the Bloch—-McConnell equations, new expressions are derived

average Larmor frequency, and the longitudinal relaxation rat
R; equals the transverse relaxation r&e(4). In the present
work, new expressions fdRy, are derived that generalize these

for the spin relaxation rate constant in the rotating frame, R;,, for
chemical exchange between two sites that have distinct magnetic
environments and Larmor frequencies. The results are accurate
provided that the spin relaxation decay is dominated by a single
exponential damping constant and are applicable to a wider
range of conditions than existing theoretical descriptions. The
new expressions for R;, will be particularly useful in analyzing
experimental data when exchange is not fast and site populations
are unequal. © 2002 Elsevier Science
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existing results.

2. BLOCH-MCCONNELL EQUATION

We consider a chemical reaction or conformational transitiol
that exchanges a nuclear spin between two skasnd B with
distinct magnetic environments,

ka
A% B [1]

in whichk, is the rate constant for the forward reaction &pb
the rate constant for the reverse reaction. Although the reactic
is depicted in Eq. [1] as first-order, higher-order ligand-binding
Chemical reaction kinetics can be quantified by nuclear ma@f-oligomerization reactions can be treated by defining pseud
netic resonance (NMR) spectroscopy using nuclear spin relafgst-order rate constantg) The kinetic process is studied by
tion in the presence of a radiofrequency (rf) field (for reviewdMR spectroscopy while the system remains in chemical equ
see Refs. 1, 2)). The characteristic relaxation rate constant #prium. _ _ _
called Ry,, and the experiment itself is referred to aRg, The resonance offsets in the rotating frame are define@)as (
or Ty, (T1, = 1/Ry,) rotating-frame relaxation measurement.
In recent yearsR;, experiments have been applied to eluci-
date intramolecular conformational changes, ligand binding, and
folding of proteins and other biological macromolecul@s [h
experimental studies, the dependenceRgf on experimental in which 2, and;, are the Larmor frequencies of sitésand
conditions, such as the amplitude and the frequency of theBf respectively, and: is the frequency of the applied rf field.
field, is used to determine the rate constants, site populatiohbg exchange ratk = k, + k;, is referred to as slow, inter-
and Larmor frequencies for nuclear spins affected by the kiiediate, or fast on the chemical shift time scale, if it is muct
netic process. The most commonly used theoretical expresssomaller than, comparable to, or much greater than the differen
for Ry, requires that exchange kinetics be fast on the chenbietween the two Larmor frequencies. The Larmor frequencie
cal shift time scale, i.e., the chemical-exchange rate constanaie proportional to the value of the static magnetic field of the
much greater than the difference between the Larmor frequédiMR spectrometer; therefore, the time scale of the exchanc
cies of the exchanging nuclear spi8%. (An expression also has process can depend on the NMR spectrometer utilized.
been reported that is applicable to all kinetic regimes providedThe time evolution of the magnetization components for the
that one of the sites is much more populated than others, #gens in staté (May, May, Ma) and in stateB (Mpyx, Mpy, Mp)
frequency of the applied rf field coincides with the populatiois described by the Bloch—McConnell equatién §)

1. INTRODUCTION

8a = Qa — Wrf, [2]
&b = Q2 — wrt, (3]
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Max _ka - R2 kb _8a 0 O O Max 0
Mpx Ka —kp — R 0 —3b 0 0 Mpx 0
d| M b 0 —ks — R k — 0 M 0
a ay | _ a Ka 2 b w1 ay + R 0 [4]
dt Mpy 0 Sp Ka —ky — Ry 0 —w1 Mpy
Maz 0 0 o1 0 —ke—R ko Maz Mao
Mbz 0 0 0 o1 ka = —kn— R/ \ My Meo
R; andR; are the intrinsic longitudinal and transverse relaxation-k, — ¢k, —5a 0 0
rates, respectively, resulting from processes other than chemicaly,  _k, —¢ 0 —5p 0
exchange. For the situations considered herein, numerical sim-5, 0 —ka—f ke —on
ulations indicate that the effect of the differences between the 5 ke  —ky—¢ 0 ey 7Y
intrinsic relaxation rates for species in sitksand B on Ry, is 0 0 o1 0 Kot —¢ K
negligible as long aR; andR; in Eq. [4] are understood as pop- 0 0 0 o1 k. kot &

ulation average valuedl g andMyg are the thermal equilibrium

magnetizations in siteé and B, respectively, and are propor- [7]
tional to the site populationp; = kp/k and pp, = ka/k. The

amplitude of the rf field is denoted hy, and is defined by its where, for convenience, two new variables have been intro
Rabi frequency®). Equation [4] is a first-order linear differential duced:

equation with constant coefficients. Its solution has the form

A+ Ry, [8]

r=R —R;. [9]

e
Il

6
M) =) el +S, (5]
n=1 The 106 terms that result from direct expansion of Eq. [7] car

be grouped by powers gfandr into 18 nonzero terms:
where A, is thenth eigenvalue of the matrix in Eq. [4l is
proportional to the corresponding eigenvector, &hds the Z aijsirj —0. [10]
stationary solution.

For realistic experimental conditions, numerical simulations
establish that four of the six eigenvalues are complex with a
relatively large imaginary part, while the remaining two eigen-

vallues a.re.real and negat|ve_. In practiog,varies at cpfferent laxation rate during thd;, experiment has to be slower than
points within the macroscopic NMR sample due to instrumeR -1 1o pe observed experimentally. Therefareand are

_taI imperfections. Tha’_l mhomogenelty. mtroduc.es Va_”ab'“ty small parameters and, recalling that the relaxation decay is m¢
in the values of the eigenvalues and in the orientation of t_'r‘ﬂ%exponential, Eq. [10] can be linearized by keeping only thos:

eigenbasis. While the latter effect is insignificant, eigenvalue IRrms withi - i < 1. The solution of the linearized equation
homogeneity results in rapid averaging of the oscillatory (i'eforg yields: -

corresponding to nonreal eigenvalues) components to zero. In

many cases of interest, the two real eigenvalues are very different Si? 0pa pod2(r — K) + 00529(w2 LK. 8252/82)r
in magnitude, and, on experimentally accessible time scales, the = alh > 1 a’b/a
larger (least negative) real eigenvalue dominates the evolution W2t Opet/ Vet T K
of the magnetization components, making the relaxation decay [11]
essentially monoexponential. Thus, the problem of finding the

relaxation rateRy, reduces to finding the largest real eigenvalug, \which

A of the matrix in Eq. [4]:

0<i<6

0<j=2

In practice,R; and R, are of the order of 103, and the re-

’

Q = PaQa + P, [12]
Rip = —4. [6] AQ =Q — o, [13]
8§ =38p— 82 = Q2 — Qa, [14]
3. APPROXIMATE SOLUTIONS
3ot = 55 + 01, [15]
The eigenvalue problem is equivalent to finding the roots of 9 9 2
the determinant: Whett = 0p + @1, [16]
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wgﬁ = AQ% 4+ wf [17] and exchange is not in the fast limit. Under these conditions, th
assumption that the relaxation decay is dominated by a sing
0 = arctanf1/AL). [18]  gamping constant is violated.

i . ) . In many systems of practical interest, the free energy dif
Returning tothe original variablesin Egs. [8] and [9] and negleGis,ence between sites is greater thayT; consequently, the

ingr compare_d tcb_<, the linearized expression for the relaxationjie populations are unequal because even small differenc

rate constant is given by in energy translate into large population differences throug

) ) the Boltzman equatior?2( 7). Equation [19] can be simplified
Siff 0pa pod’k . [19] furtherifone of the sites is much more populated than the othe

Whet et/ Vo5 + K2 In the asymmetric-populations limip, > pn; consequently,

8o~ AQ and weif~ waerr. Using these relations to simplify

In the fast-exchange Iimiwgeﬁwgeﬁ/wgﬁ+ k2 ~ w§ﬁ+ k2. Eqg. [19], the relaxation rate constant in the asymmetric

Therefore, [19] agrees with the previously derived expressipopulations limit becomes

for the relaxation rate constant in the fast-exchange lig)it (

Ri, = Ric0g6 + Rysirf 6 +

Sir? 9 pa ppdk

R, = Ricog0 + Rysinf 6 +
v ’ B+

Sir? 6 pa ppd2k 1]
Wit ke

Ry, = R cO€ 0 + Rysirf 6 + [20]

Equation [21] generalizes the expression previously reported fc

Equation [19] generalizes Eq. [20] and is one of the main resulf¥¢ SPecial conditionB; = R, andwr = €2 (4). The new result

of the present work. In the fast-exchange lini, does not de- allows bothw; andwrs to be varied experimentally. .

pend ons, pa, and py, separately, but only on their combination The eff.ectlve 'rel'axatlon rate is defined as the relaxation rat
Pa Po2. Therefores, pa, andpy, cannot be determined indepen£onstantin the limitoy — oo or AQ — oo and, from Eq. [19],
dently of each other. In contrast, outside of the fast-exchani§ediven by
limit, independent determination &f p,, and py is possible

due to the dependence of the denominator in Eq. [19] on these
parameters through,es andwpets. . . )

The linearized expression given by Eq. [19], the fast-limit e;he exchange relaxation rate constantis definedjas (
pression given by Eq. [20], and the exact numerical solution to Ry, — R
(Eg. [7]) are compared in Fig. 1. For the indicated conditions, Rex pT
the linearized result agrees very well with the exact result for sin”6

aI_I values ofk; in contrast, the fast-limit e_xpression agrees Wella|yes of R; and R, can be determined independently from
with the exact result whek/s > 4, but fails for exchange pro- Ry, (2), which allowsRey to be defined experimentally. From

cesses that are slower. Numerical simulations for a wider rangg§s. [19], [22] and [23], the linearized expression Ry is
of conditions indicate that the linearized approximation is acCljien by

rate except for cases in which site populations are nearly equal

Reff = Ry COS 0 + Ry Sirf 6. [22]

(23]

82k
Rey — Pa Po [24]

2 2 2 2°
waeﬂ”beﬁ/ Weit +k

Similarly, from Eqs. [3], [16], [19], [22], and [23], the
asymmetric-populations limit expression fegy is

Pa Pod2k

R = (s — o )+ R TR

(25]

Finally, from Eqgs. [13], [17], [20], [22], and [23] the fast-limit
expression foRgy is:

108 1(1‘: 10° Rey = Pa Pod2k
k(s™) T Q- o)+l Kk

(26]

FIG. 1. Exchange rate dependenceRyf,. Results are calculated for (—) The asvmmetric-populations limit expression diven b
exact numerical solution; (-) Eq. [19], and (- - -) Eq. [20]. Calculations used Yy IC-populat imi Xp ! gv Y

w1 = 10005, AQ = 20005, py/pa = 03,6 = 2400sL, R, = 15s°L, EQ. [25], the fast-limit expression given by Eq. [26], and the
andR, = 11sL. exact numerical solution to Egs. [6], [7], and [23] are comparec
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140 : : : Herein, new expressions have been presented that generalize
120 isting theoretical descriptions for the spin relaxation rate con
stant in the rotating frameR,,,, for two-site exchange pheno-
___100 mena. The resulting expressions given in Eq. [19], and Eq. [21
‘Tw 80 are accurate provided that the relaxation decay is dominate
e by a single exponential damping constant. Table 1 summarize
o 60 the range of applicability of the existing and new theoretical
40 results.
The new expressions fdR;, are expected to be very valu-
20 able for analyzing experimental data when exchange is nc
0 fast and site populations are unequal. In particular, in the
-10

asymmetric-populations limit, thRy, experiment allows com-
AQ (1 03 3‘1) plete characterization of exchange kinetics using data recorde
at a single static magnetic field strength. In contrast, to chat
tained from Eq. [23] using the exact numerical solution,-§ Eq. [25], and acterize a S.yStem Ol.!tSIde Of.the fast-exchange limit, the Carr
(---) Eq. [26]. Calculations useg; = 10005, k = 150052, py/pa = 0.05, E’urcell—Melboom—Glll.experlment must pe performed. at mul-
5§ =2400s1, Ry =155} andR, = 11sL. tiple static magnetic field strengths, which requires inconve
nient use of different NMR spectrometers subject to systemati
variability (9).

FIG. 2. Offset dependence d®x. Results are calculated for (—Rex Ob-

in Fig. 2. For the indicated conditions, in whi&ts = 0.6, re-
sults calculated using Eq. [25] agree very well with the exact ACKNOWLEDGMENT
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